En el libro “Cónicas”, de Apolonio de Perga, se estudian las figuras que pueden obtenerse al intersecar un bicono con diversos planos. Previo a este trabajo, existían estudios elementales sobre determinadas intersecciones de planos perpendiculares a las generatrices de un cono, obteniéndose circunferencias, elipses, parábolas o hipérbolas, según el ángulo superior del cono fuese agudo, recto u obtuso.
La importancia fundamental de las cónicas radica en su constante aparición en situaciones reales: La trayectoria que describe cualquier móvil que es lanzado con una cierta velocidad inicial, que no sea vertical, se puede considerar parábola.
4.2 CIRCUNFERENCIA
Conjunto de puntos en el plano cartesiano que se encuentran a una distancia fija r, de un punto fijo O(h, k). La distancia fija r es denominada longitud del radio y el punto fijo O (h, k), es el centro de la circunferencia. Si β = 90º la intersección del plano con la superficie cónica es una circunferencia.
4.3 PARÁBOLA
Se define también como el lugar geométrico de los puntos que equidistan de una recta (eje o directriz) y un punto fijo llamado foco.
4.4 ELIPSE
Una elipse es la curva cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.
4.5 HIPÉRBOLA
Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje de simetría –con ángulo menor que el de la generatriz respecto del eje de revolución.
No hay comentarios:
Publicar un comentario